As we saw in part 1 and part 2 of this series the typical measurements of sky brightness in Providence are between about 4.1 - 4.3 nelm (naked eye limiting magnitude) on clear nights. Here is a graph that shows a typical hazy summer night. The readings were taken on the night of July 1st into the
morning of July 2nd of 2014 and are in the range that we commonly see. The dashed horizontal line is a somewhat arbitrary divider between typical and darker nights. When the sky brightness is below about 4.3 the observing is much better.
Looking at a graph of the sky brightness doesn't give an intuitive idea of what the sky actually looked like for observing. We can see this by looking at the wide angle views of the sky using the camera mounted on the roof. Here is a time lapse movie from the same night as the above graph.
Showing posts with label Light Pollution. Show all posts
Showing posts with label Light Pollution. Show all posts
Sunday, August 10, 2014
Saturday, August 9, 2014
Sky Brightness 2
In my previous post I began to analyze the data from the sky brightness meter at Ladd Observatory. Now we'll take a closer look at the broader trends. Here is a scatter plot showing the data from the summer and fall of 2013. The plot is a little busy but we're really only interested in the "bottom line" where the data points are at the lowest values. All of the nights are superimposed on one another with the x axis showing hours UTC. This graph summarizes how the sky brightness changes during the course of the night. The many values between 3.7 and 4.3 are due to nights that are more or less hazy. There moisture in the atmosphere scatters light from the city back down to us and causes the overall sky to look brighter.
If we follow the lowest readings there is a definite trend where the clearest nights start off at about 4.2 at the end of twilight and slowly, steadily, decrease to about 4.45 at 4 hours UTC. There is then a small but rather sudden drop to 4.55 after which the slow decrease continues until we are at about 4.6 in the early morning. I'm not sure what is causing the drop at 4 hours but it may be due to city lights that are on a timer. The takeaway here is that the sky is slightly, but significantly, brighter in the early evening. The best time to observe is after midnight local time through the early morning.
If we follow the lowest readings there is a definite trend where the clearest nights start off at about 4.2 at the end of twilight and slowly, steadily, decrease to about 4.45 at 4 hours UTC. There is then a small but rather sudden drop to 4.55 after which the slow decrease continues until we are at about 4.6 in the early morning. I'm not sure what is causing the drop at 4 hours but it may be due to city lights that are on a timer. The takeaway here is that the sky is slightly, but significantly, brighter in the early evening. The best time to observe is after midnight local time through the early morning.
Friday, August 8, 2014
Sky Brightness
"The sky above the port was the color of television, tuned to a dead channel."
- Neuromancer, William Gibson, 1984.
At the Ladd Observatory we operate a weather station and a number of other rooftop instruments to monitor the environment. One of them is a sky brightness meter. On a regular basis we use the live data to judge the quality of the sky for observing. It is also used to document long term changes such as the increase in light pollution.
![]() |
Sky brightness meter and camera on the roof. |
The sensor is too sensitive to take a measurement during the daytime. It starts collecting data shortly after sunset when the sky begins to darken and stops during morning twilight just before sunrise. Last summer I calibrated the meter and we've now collected 300,000 data points in about one year. I thought this would be a good time to analyze what we have so far.
Subscribe to:
Posts (Atom)